Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.612
Filtrar
1.
Sci Rep ; 14(1): 8714, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622266

RESUMO

Green, photosynthesizing plants can be proficiently used as cost-effective, single-use, fully biodegradable bioreactors for environmentally-friendly production of a variety of valuable recombinant proteins. Being near-infinitely scalable and most energy-efficient in generating biomass, plants represent profoundly valid alternatives to conventionally used stationary fermenters. To validate this, we produced a plastome-engineered tobacco bioreactor line expressing a recombinant variant of the protein A from Staphylococcus aureus, an affinity ligand widely useful in antibody purification processes, reaching accumulation levels up to ~ 250 mg per 1 kg of fresh leaf biomass. Chromatography resin manufactured from photosynthetically-sourced recombinant protein A ligand conjugated to agarose beads demonstrated the innate pH-driven ability to bind and elute IgG-type antibodies and allowed one-step efficient purification of functional monoclonal antibodies from the supernatants of the producing hybridomas. The results of this study emphasize the versatility of plant-based recombinant protein production and illustrate its vast potential in reducing the cost of diverse biotechnological applications, particularly the downstream processing and purification of monoclonal antibodies.


Assuntos
Cromatografia , Proteína Estafilocócica A , Proteína Estafilocócica A/química , Ligantes , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Anticorpos Monoclonais/metabolismo , Imunoglobulina G/metabolismo , Proteínas de Plantas/metabolismo , Cromatografia de Afinidade/métodos
2.
PLoS One ; 19(4): e0297539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635553

RESUMO

The objective of this research was to develop and validate two immunoassays for oxytocin measurement in human saliva, one using a monoclonal and the other a polyclonal antibody against oxytocin, whose affinity for oxytocin was tested by an antibody mapping epitope analysis. These assays were analytically validated and used to compare oxytocin concentrations with those obtained with a commercial kit before and after the extraction or reduction/alkylation (R/A) treatments to saliva samples. The assays were also used to evaluate changes in salivary oxytocin concentrations following a physical effort and an induced psychological stress, which have previously been described as situations that cause an increase in salivary oxytocin. Both assays showed to be precise and accurate in the validation studies, and the antibodies used showed a defined binding region in case of the monoclonal antibody, whereas the polyclonal antibody showed binding events through all the oxytocin sequence. Although the monoclonal and polyclonal assays showed a positive correlation, they give results in a different range of magnitude. Both assays showed significant increases in oxytocin concentrations when applied after the physical effort and the psychological stress. This study shows that a variability in the reported values of oxytocin can occur depending on the assay and indicates that the use of different types of antibodies can give a different range of values when measuring oxytocin in saliva.


Assuntos
Ocitocina , Saliva , Humanos , Ocitocina/metabolismo , Saliva/metabolismo , Imunoensaio , Anticorpos Monoclonais/metabolismo , Bioensaio
3.
J Virol ; 98(3): e0183823, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38426726

RESUMO

Nipah virus (NiV) is a highly lethal, zoonotic Henipavirus (HNV) that causes respiratory and neurological signs and symptoms in humans. Similar to other paramyxoviruses, HNVs mediate entry into host cells through the concerted actions of two surface glycoproteins: a receptor-binding protein (RBP) that mediates attachment and a fusion glycoprotein (F) that triggers fusion in an RBP-dependent manner. NiV uses ephrin-B2 (EFNB2) and ephrin-B3 (EFNB3) as entry receptors. Ghana virus (GhV), a novel HNV identified in a Ghanaian bat, uses EFNB2 but not EFNB3. In this study, we employ a structure-informed approach to identify receptor-interfacing residues and systematically introduce GhV-RBP residues into a NiV-RBP backbone to uncover the molecular determinants of EFNB3 usage. We reveal two regions that severely impair EFNB3 binding by NiV-RBP and EFNB3-mediated entry by NiV pseudotyped viral particles. Further analyses uncovered two-point mutations (NiVN557SGhV and NiVY581TGhV) pivotal for this phenotype. Moreover, we identify NiV interaction with Y120 of EFNB3 as important for the usage of this receptor. Beyond these EFNB3-related findings, we reveal two domains that restrict GhV binding of EFNB2, confirm the HNV-head as an immunodominant target for polyclonal and monoclonal antibodies, and describe putative epitopes for GhV- and NiV-specific monoclonal antibodies. Cumulatively, the work presented here generates useful reagents and tools that shed insight to residues important for NiV usage of EFNB3, reveal regions critical for GhV binding of EFNB2, and describe putative HNV antibody-binding epitopes. IMPORTANCE: Hendra virus and Nipah virus (NiV) are lethal, zoonotic Henipaviruses (HNVs) that cause respiratory and neurological clinical features in humans. Since their initial outbreaks in the 1990s, several novel HNVs have been discovered worldwide, including Ghana virus. Additionally, there is serological evidence of zoonotic transmission, lending way to concerns about future outbreaks. HNV infection of cells is mediated by the receptor-binding protein (RBP) and the Fusion protein (F). The work presented here identifies NiV RBP amino acids important for the usage of ephrin-B3 (EFNB3), a receptor highly expressed in neurons and predicted to be important for neurological clinical features caused by NiV. This study also characterizes epitopes recognized by antibodies against divergent HNV RBPs. Together, this sheds insight to amino acids critical for HNV receptor usage and antibody binding, which is valuable for future studies investigating determinants of viral pathogenesis and developing antibody therapies.


Assuntos
Infecções por Henipavirus , Henipavirus , Receptores Virais , Humanos , Aminoácidos/genética , Anticorpos Monoclonais/metabolismo , Proteínas de Transporte/metabolismo , Efrina-B3/genética , Efrina-B3/química , Efrina-B3/metabolismo , Epitopos/genética , Epitopos/metabolismo , Gana , Vírus Hendra/metabolismo , Henipavirus/classificação , Henipavirus/genética , Henipavirus/metabolismo , Mutagênese , Vírus Nipah/metabolismo , Proteínas do Envelope Viral/genética , Internalização do Vírus , Receptores Virais/metabolismo
4.
Breast Dis ; 43(1): 37-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38552109

RESUMO

BACKGROUND: Breast cancer tumor microenvironment (TME) is a promising target for immunotherapy. Autophagy, and cancer stem cells (CSCs) maintenance are essential processes involved in tumorigenesis, tumor survival, invasion, and treatment resistance. Overexpression of angiogenic chemokine interleukin-8 (IL-8) in breast cancer TME is associated with oncogenic signaling pathways, increased tumor growth, metastasis, and poor prognosis. OBJECTIVE: Thus, we aimed to investigate the possible anti-tumor effect of neutralizing antibodies against IL-8 by evaluating its efficacy on autophagic activity and breast CSC maintenance. METHODS: IL-8 monoclonal antibody supplemented tumor tissue culture systems from 15 females undergoing mastectomy were used to evaluate the expression of LC3B as a specific biomarker of autophagy and CD44, CD24 as cell surface markers of breast CSCs using immunofluorescence technique. RESULTS: Our results revealed that anti-IL-8 mAb significantly decreased the level of LC3B in the cultured tumor tissues compared to its non-significant decrease in the normal breast tissues.Anti-IL-8 mAb also significantly decreased the CD44 expression in either breast tumors or normal cultured tissues. While it caused a non-significant decrease in CD24 expression in cultured breast tumor tissue and a significant decrease in its expression in the corresponding normal ones. CONCLUSIONS: Anti-IL-8 monoclonal antibody exhibits promising immunotherapeutic properties through targeting both autophagy and CSCs maintenance within breast cancer TME.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , Interleucina-8/metabolismo , Interleucina-8/farmacologia , Linhagem Celular Tumoral , Microambiente Tumoral , Mastectomia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Autofagia
5.
Front Immunol ; 15: 1347871, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469305

RESUMO

The antibody- FcγRIIIa interaction triggers key immunological responses such as antibody dependent cellular cytotoxicity (ADCC), making it highly important for therapeutic mAbs. Due to the direct glycan-glycan interaction with FcγRIIIa receptor, differences in antibody glycosylation can drastically influence the binding affinity. Understanding the differential binding of mAb glycoforms is a very important, yet challenging task due to the co-existence of multiple glycoforms in a sample. Affinity liquid chromatography (AC) and affinity capillary electrophoresis (ACE) hyphenated with mass spectrometry (MS) can provide glycoform-resolved affinity profiles of proteins based on their differences in either dissociation (AC) or equilibrium (ACE) constants. To cross-validate the affinity ranking provided by these complementary novel approaches, both techniques were benchmarked using the same FcγRIIIa constructs. Both approaches were able to assess the mAb - FcγRIIIa interaction in a glycoform selective manner and showed a clear increase in binding for fully versus hemi-fucosylated mAbs. Also, other features, such as increasing affinity with elevated galactosylation or the binding affinity for high mannose glycoforms were consistent. We further applied these approaches to assess the binding towards the F158 allotype of FcγRIIIa, which was not reported before. The FcγRIIIa F158 allotype showed a very similar profile compared to the V158 receptor with the strongest increase in binding due to afucosylation and only a slight increase in binding with additional galactosylation. Both techniques showed a decrease of the binding affinity for high mannose glycoforms for FcγRIIIa F158 compared to the V158 variant. Overall, both approaches provided very comparable results in line with orthogonal methods proving the capabilities of separation-based affinity approaches to study FcγR binding of antibody glycoforms.


Assuntos
Imunoglobulina G , Receptores de IgG , Receptores de IgG/metabolismo , Imunoglobulina G/metabolismo , Manose , Benchmarking , Anticorpos Monoclonais/metabolismo , Polissacarídeos/metabolismo , Espectrometria de Massas
6.
Biotechnol J ; 19(3): e2300552, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528347

RESUMO

Production of therapeutic monoclonal antibody (mAb) in transgenic plants has several advantages such as large-scale production and the absence of pathogenic animal contaminants. However, mAb with high mannose (HM) type glycans has shown a faster clearance compared to antibodies produced in animal cells. The neonatal Fc receptor (FcRn) regulates the persistence of immunoglobulin G (IgG) by the FcRn-mediated recycling pathway, which salvages IgG from lysosomal degradation within cells. In this study, Fc-engineering of antirabies virus therapeutic mAb SO57 with the endoplasmic reticulum (ER)-retention peptide signal (Lys-Asp-Glu-Leu; KDEL) (mAbpK SO57) in plant cell was conducted to enhance its binding activity to human neonatal Fc receptor (hFcRn), consequently improve its serum half-life. Enzyme-linked immunosorbent assay (ELISA) and Surface plasmon resonance assay showed altered binding affinity of the Fc region of three different mAbpK SO57 variants [M252Y/S254T/T256E (MST), M428L/N434S (MN), H433K/N434F (HN)] to hFcRn compared to wild type (WT) of mAbpK SO57. Molecular modeling data visualized the structural alterations in these mAbpK SO57. All of the mAbpK SO57 variants had HM type glycan structures similar to the WT mAbpK SO57. In addition, the neutralizing activity of the three variants against the rabies virus CVS-11 was effective as the WT mAbpK SO57. These results indicate that the binding affinity of mAbpK SO57 variants to hFcRn can be modified without alteration of N-glycan structure and neutralization activity. Taken together, this study suggests that Fc-engineering of antirabies virus mAb can be applied to enhance the efficacy of therapeutic mAbs in plant expression systems.


Assuntos
Antígenos de Histocompatibilidade Classe I , Imunoglobulina G , Receptores Fc , Humanos , Anticorpos Monoclonais/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Imunoglobulina G/biossíntese , Imunoglobulina G/genética , Polissacarídeos , Receptores Fc/genética , Engenharia de Proteínas/métodos , Plantas/genética , Plantas/metabolismo
7.
Methods Mol Biol ; 2768: 211-239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502396

RESUMO

The affinity distribution of the antigen-specific memory B cell (Bmem) repertoire in the body is a critical variable that defines an individual's ability to rapidly generate high-affinity protective antibody specificities. Detailed measurement of antibody affinity so far has largely been confined to studies of monoclonal antibodies (mAbs) and are laborious since each individual mAb needs to be evaluated in isolation. Here, we introduce two variants of the B cell ImmunoSpot® assay that are suitable for simultaneously assessing the affinity distribution of hundreds of individual B cells within a test sample at single-cell resolution using relatively little labor and with high-throughput capacity. First, we experimentally validated that both ImmunoSpot® assay variants are suitable for establishing functional affinity hierarchies using B cell hybridoma lines as model antibody-secreting cells (ASC), each producing mAb with known affinity for a defined antigen. We then leveraged both ImmunoSpot® variants for characterizing the affinity distribution of SARS-CoV-2 Spike-specific ASC in PBMC following COVID-19 mRNA vaccination. Such ImmunoSpot® assays promise to offer tremendous value for future B cell immune monitoring efforts, owing to their ease of implementation, applicability to essentially any antigenic system, economy of PBMC utilization, high-throughput capacity, and suitability for regulated testing.


Assuntos
Linfócitos B , Leucócitos Mononucleares , Leucócitos Mononucleares/metabolismo , ELISPOT , Antígenos , Células Produtoras de Anticorpos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo
8.
Biotechnol J ; 19(3): e2300688, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479991

RESUMO

Filamentous bacteriophage display technology has been employed in antibody discovery, drug screening, and protein-protein interaction study across various fields, including food safety, agricultural pollution, and environmental monitoring. Antifilamentous bacteriophage antibodies for identifying filamentous bacteriophage are playing a pivotal role in this technology. However, the existing antifilamentous bacteriophage antibodies lack sensitivity and specificity, and the antibodies preparation methods are cumbersome and hyposensitive. The major coat protein pVIII of filamentous bacteriophage has an advantage in quantification, which is benefit for detecting signal amplification but its full potential remains underutilized. In this study, the partial polypeptide CT21 of the major coat protein pVIII of filamentous bacteriophage was intercepted as the targeted immunogen or coating antigen to prepare antifilamentous bacteriophage antibodies. Six filamentous bacteriophage-specific monoclonal antibodies (mAbs) M5G8, M9A2, P6B5, P6D2, P8E4, and P10D4 were obtained. The limit of detections of the prepared six mAbs for detecting filamentous bacteriophage was 1.0 × 107  pfu mL-1 . These mAbs stayed stable under different pH, temperature, and exhibited high specificity in real application. This study not only provides a new idea for simplifying the preparation of antifilamentous bacteriophage antibodies which could apply in filamentous bacteriophage display, but it also presents a novel strategy for preparing antibodies against protein-specific epitopes with high sensitivity.


Assuntos
Inovirus , Inovirus/genética , Inovirus/metabolismo , Anticorpos Monoclonais/metabolismo , Capsídeo , Peptídeos/metabolismo , Epitopos
9.
Mol Pharm ; 21(4): 1639-1652, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395041

RESUMO

Monoclonal antibodies (mAbs) possess favorable pharmacokinetic properties, high binding specificity and affinity, and minimal off-target effects, making them promising therapeutic agents for central nervous system (CNS) disorders. However, their development as effective therapeutic and diagnostic agents for brain disorders is hindered by their limited ability to efficiently penetrate the blood-brain barrier (BBB). Therefore, it is crucial to develop efficient delivery methods that enhance the penetration of antibodies into the brain. Previous studies have demonstrated the potential of cadherin-derived peptides (i.e., ADTC5, HAVN1 peptides) as BBB modulators (BBBMs) to increase paracellular porosities for penetration of molecules across the BBB. Here, we test the effectiveness of the leading BBBM peptide, HAVN1 (Cyclo(1,6)SHAVSS), in enhancing the permeation of various monoclonal antibodies through the BBB using both in vitro and in vivo systems. In vitro, HAVN1 has been shown to increase the permeability of fluorescently labeled macromolecules, such as a 70 kDa dextran, 50 kDa Fab1, and 150 kDa mAb1, by 4- to 9-fold in a three-dimensional blood-brain barrier (3D-BBB) microfluidics model using a human BBB endothelial cell line (i.e., hCMEC/D3). HAVN1 was selective in modulating the BBB endothelial cell, compared to the pulmonary vascular endothelial (PVE) cell barrier. Co-administration of HAVN1 significantly improved brain depositions of mAb1, mAb2, and Fab1 in C57BL/6 mice after 15 min in the systemic circulation. Furthermore, HAVN1 still significantly enhanced brain deposition of mAb2 when it was administered 24 h after the administration of the mAb. Lastly, we observed that multiple doses of HAVN1 may have a cumulative effect on the brain deposition of mAb2 within a 24-h period. These findings offer promising insights into optimizing HAVN1 and mAb dosing regimens to control or modulate mAb brain deposition for achieving desired mAb dose in the brain to provide its therapeutic effects.


Assuntos
Barreira Hematoencefálica , Microfluídica , Camundongos , Animais , Humanos , Barreira Hematoencefálica/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Peptídeos/metabolismo , Modelos Animais , Anticorpos Monoclonais/metabolismo
10.
Protein Expr Purif ; 217: 106445, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342386

RESUMO

INTRODUCTION: The aim of this study was to compare two CRISPR/Cas9-based orthogonal strategies, paired-Cas9 nickase (paired-Cas9n) and RNA-guided FokI (RFN), in targeting 18S rDNA locus in Chinese hamster ovary (CHO) cells and precisely integrating a bicistronic anti-CD52 monoclonal antibody (mAb) expression cassette into this locus. METHODS: T7E1 and high-resolution melt (HRM) assays were used to compare the ability of mentioned systems in inducing double-strand break (DSB) at the target site. Moreover, 5'- and 3'-junction polymerase chain reactions (PCR) were used to verify the accuracy of the targeted integration of the mAb expression cassette into the 18S rDNA locus. Finally, anti-CD52 mAb gene copy number was measured and, its expression was analyzed using ELISA and western blot assays. RESULTS: Our results indicated that both paired-Cas9n and RFN induced DSB at the target site albeit RFN performance was slightly more efficient in HRM analysis. We also confirmed that the anti-CD52 mAb cassette was accurately integrated at the 18S rDNA locus and the mAb was expressed successfully in CHO cells. CONCLUSION: Taken together, our findings elucidated that both paired-Cas9n and RFN genome editing tools are promising in targeting the 18S rDNA locus. Site specific integration of the bicistronic anti-CD52 mAb expression cassette at this locus in the CHO-K1 cells was obtained, using RFN. Moreover, proper expression of the anti-CD52 mAb at the 18S rDNA target site can be achieved using the bicistronic internal ribosome entry site (IRES)-based vector system.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Cricetinae , Animais , Edição de Genes/métodos , Cricetulus , Células CHO , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , DNA Ribossômico , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo
11.
Mol Cell Proteomics ; 23(3): 100734, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342408

RESUMO

Antigen-antibody interactions play a key role in the immune response post vaccination and the mechanism of action of antibody-based biopharmaceuticals. 4CMenB is a multicomponent vaccine against Neisseria meningitidis serogroup B in which factor H binding protein (fHbp) is one of the key antigens. In this study, we use hydrogen/deuterium exchange mass spectrometry (HDX-MS) to identify epitopes in fHbp recognized by polyclonal antibodies (pAb) from two human donors (HDs) vaccinated with 4CMenB. Our HDX-MS data reveal several epitopes recognized by the complex mixture of human pAb. Furthermore, we show that the pAb from the two HDs recognize the same epitope regions. Epitope mapping of total pAb and purified fHbp-specific pAb from the same HD reveals that the two antibody samples recognize the same main epitopes, showing that HDX-MS based epitope mapping can, in this case at least, be performed directly using total IgG pAb samples that have not undergone Ab-selective purification. Two monoclonal antibodies (mAb) were previously produced from B-cell repertoire sequences from one of the HDs and used for epitope mapping of fHbp with HDX-MS. The epitopes identified for the pAb from the same HD in this study, overlap with the epitopes recognized by the two individual mAbs. Overall, HDX-MS epitope mapping appears highly suitable for simultaneous identification of epitopes recognized by pAb from human donors and to thus both guide vaccine development and study basic human immunity to pathogens, including viruses.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis , Humanos , Mapeamento de Epitopos/métodos , Neisseria meningitidis/metabolismo , Deutério/metabolismo , Proteínas de Bactérias/metabolismo , Infecções Meningocócicas/prevenção & controle , Proteínas de Transporte , Medição da Troca de Deutério , Fator H do Complemento , Antígenos de Bactérias , Epitopos , Anticorpos Monoclonais/metabolismo , Espectrometria de Massa com Troca Hidrogênio-Deutério
12.
J Vis Exp ; (203)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38314757

RESUMO

Host cell proteins (HCPs) are impurities that can adversely affect therapeutic proteins, even in small quantities. To evaluate the potential risks associated with drug products, methods have been developed to identify low-abundance HCPs. A crucial approach for developing a sensitive HCP detection method involves enriching HCPs while simultaneously removing monoclonal antibodies (mAbs) before analysis, utilizing liquid chromatography-mass spectrometry (LC-MS). This protocol offers detailed instructions for enriching host cell proteins using commercially available proteome enrichment beads. These beads contain a diverse library of hexapeptide ligands with specific affinities for different proteins. The protocol also incorporates limited digestion and subsequent peptide detection using nano LC-MS/MS. By employing these techniques, HCPs with low abundance can be enriched over 7000-fold, resulting in an impressive detection limit as low as 0.002 ppm. Significantly, this protocol enables the detection of 850 HCPs with a high level of confidence using a NIST mAb. Moreover, it is designed to be user-friendly and includes a video demonstration to assist with its implementation. By following these steps, researchers can effectively enrich and detect HCPs, enhancing the sensitivity and accuracy of risk assessment for drug products.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Animais , Cricetinae , Cromatografia Líquida/métodos , Peptídeos/análise , Anticorpos Monoclonais/metabolismo , Digestão , Cricetulus , Células CHO
13.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338686

RESUMO

GT-00AxIL15 is a novel interleukin-15-based immunocytokine targeting a tumor-specific, glycosylated epitope of MUC1 (TA-MUC1). We characterized mode of action, pharmacokinetic (PK) and pharmacodynamic (PD) properties and investigated the relevance of TA-MUC1 binding for the concept of delivering IL-15 to solid tumors. In vitro pharmacology was analyzed in binding and cell-based assays. The in vivo PK profile and IL-15-mediated PD effects of GT-00AxIL15 were investigated in tumor-free mice. Tumor accumulation, immune infiltration and anti-tumor activity were assessed in TA-MUC1+ syngeneic and xenogeneic murine tumor models. GT-00AxIL15 was shown to specifically bind TA-MUC1 on tumor cells via its mAb moiety, to IL-15 receptors on immune cells via its IL-15 fusion modules and to FcγRs via its functional Fc-part. In vitro, NK, NKT and CD8+ T cells were activated and proliferated, leading to anti-tumor cytotoxicity and synergism with antibody-dependent cellular cytotoxicity (ADCC)-mediating mAbs. In vivo, GT-00AxIL15 exhibited favorable PK characteristics with a serum half-life of 13 days and specifically accumulated in TA-MUC1+ tumors. In the tumor microenvironment, GT-00AxIL15 induced robust immune activation and expansion and mediated anti-metastatic and anti-tumor effects in syngeneic and xenograft tumor models. These results support the rationale to improve PK and anti-tumor efficacy of IL-15 by increasing local concentrations at the tumor site via conjugation to a TA-MUC1 binding mAb. The tumor-selective expression pattern of TA-MUC1, powerful immune activation and anti-tumor cytotoxicity, long serum half-life and tumor targeting properties, render GT-00AxIL15 a promising candidate for treatment of solid tumors with high medical need, e.g., ovarian, lung and breast cancer.


Assuntos
Antineoplásicos Imunológicos , Neoplasias da Mama , Interleucina-15 , Animais , Feminino , Humanos , Camundongos , Anticorpos Monoclonais/metabolismo , Neoplasias da Mama/metabolismo , Modelos Animais de Doenças , Interleucina-15/metabolismo , Mucina-1/metabolismo , Distribuição Tecidual , Microambiente Tumoral , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia
14.
Int Immunopharmacol ; 129: 111601, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350354

RESUMO

Understanding the mechanisms of resistance of hepatocellular carcinoma (HCC) to targeted therapies and immune checkpoint blockade is critical for the development of new combination therapies and improving patient survival. Here, we found that in HCC, anti-programmed cell death 1 ligand 1 (PD-L1) therapy reduces liver cancer growth, but the tumors eventually become resistant to continued therapy. Experimental analyses shows that the infiltration of pathogenic T helper 17 (pTh17) cells increases in drug-resistant HCC, and pTh17 cells secrete interleukin-17A (IL-17A), which promotes the expression of PD-L1 on the surface of HCC cells and produces resistance to anti-PD-L1 therapy. Anti-IL-17A combined with PD-L1 blockade significantly increased the infiltration of cytotoxic CD8+ T cells expressing high levels of interferon-γ and reduced treatment resistance in HCC. These results support the combination of anti-PD-L1 and anti-IL-17A as a novel strategy to induce effective T cell-mediated anti-tumor immune responses.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Linfócitos T CD8-Positivos , Antígeno B7-H1/metabolismo , Células Th17/metabolismo , Imunoterapia/métodos , Anticorpos Monoclonais/metabolismo , Microambiente Tumoral
15.
Lab Chip ; 24(4): 642-657, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38165771

RESUMO

As a class of antibodies that specifically bind to a virus and block its entry, neutralizing monoclonal antibodies (neutralizing mAbs) have been recognized as a top choice for combating COVID-19 due to their high specificity and efficacy in treating serious infections. Although conventional approaches for neutralizing mAb development have been optimized for decades, there is an urgent need for workflows with higher efficiency due to time-sensitive concerns, including the high mutation rate of SARS-CoV-2. One promising approach is the identification of neutralizing mAb candidates via single-cell RNA sequencing (RNA-seq), as each B cell has a unique transcript sequence corresponding to its secreted antibody. The state-of-the-art high-throughput single-cell sequencing technologies, which have been greatly facilitated by advances in microfluidics, have greatly accelerated the process of neutralizing mAb development. Here, we provide an overview of the general procedures for high-throughput single-cell RNA-seq enabled by breakthroughs in droplet microfluidics, introduce revolutionary approaches that combine single-cell RNA-seq to facilitate the development of neutralizing mAbs against SARS-CoV-2, and outline future steps that need to be taken to further improve development strategies for effective treatments against infectious diseases.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , SARS-CoV-2/genética , Testes de Neutralização , Anticorpos Monoclonais/metabolismo , Microfluídica , Análise de Sequência de RNA , Anticorpos Antivirais
16.
ACS Synth Biol ; 13(2): 634-647, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38240694

RESUMO

With the emerging novel biotherapeutics that are typically difficult-to-express (DTE), improvement is required for high-yield production. To identify novel targets that can enhance DTE protein production, we performed genome-wide fluorescence-activated cell sorting (FACS)-based clustered regularly interspaced short palindromic repeats (CRISPR) knockout screening in bispecific antibody (bsAb)-producing Chinese hamster ovary (CHO) cells. The screen identified the two highest-scoring genes, Atf7ip and Setdb1, which are the binding partners for H3K9me3-mediated transcriptional repression. The ATF7IP-SETDB1 complex knockout in bsAb-producing CHO cells suppressed cell growth but enhanced productivity by up to 2.7-fold. Decreased H3K9me3 levels and an increased transcriptional expression level of the transgene were also observed. Furthermore, perturbation of the ATF7IP-SETDB1 complex in monoclonal antibody (mAb)-producing CHO cells led to substantial improvements in mAb production, increasing the productivity by up to 3.9-fold without affecting the product quality. Taken together, the genome-wide FACS-based CRISPR screen identified promising targets associated with histone methylation, whose perturbation enhanced the productivity by unlocking the transgene expression.


Assuntos
Sistemas CRISPR-Cas , Genoma , Cricetinae , Animais , Cricetulus , Sistemas CRISPR-Cas/genética , Células CHO , Processamento de Proteína Pós-Traducional , Anticorpos Monoclonais/metabolismo
17.
Microb Cell Fact ; 23(1): 28, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243245

RESUMO

BACKGROUND: The need to limit antibiotic therapy due to the spreading resistance of pathogenic microorganisms to these medicinal substances stimulates research on new therapeutic agents, including the treatment and prevention of animal diseases. This is one of the goals of the European Green Deal and the Farm-To-Fork strategy. Yeast biomass with an appropriate composition and exposure of cell wall polysaccharides could constitute a functional feed additive in precision animal nutrition, naturally stimulating the immune system to fight infections. RESULTS: The results of the research carried out in this study showed that the composition of Candida utilis ATCC 9950 yeast biomass differed depending on growth medium, considering especially the content of ß-(1,3/1,6)-glucan, α-glucan, and trehalose. The highest ß-(1,3/1,6)-glucan content was observed after cultivation in deproteinated potato juice water (DPJW) as a nitrogen source and glycerol as a carbon source. Isolation of the polysaccharide from yeast biomass confirmed the highest yield of ß-(1,3/1,6)-glucan after cultivation in indicated medium. The differences in the susceptibility of ß-(1,3)-glucan localized in cells to interaction with specific ß-(1,3)-glucan antibody was noted depending on the culture conditions. The polymer in cells from the DPJW supplemented with glycerol and galactose were labelled with monoclonal antibodies with highest intensity, interestingly being less susceptible to such an interaction after cell multiplication in medium with glycerol as carbon source and yeast extract plus peptone as a nitrogen source. CONCLUSIONS: Obtained results confirmed differences in the structure of the ß-(1,3/1,6)-glucan polymers considering side-chain length and branching frequency, as well as in quantity of ß-(1,3)- and ß-(1,6)-chains, however, no visible relationship was observed between the structural characteristics of the isolated polymers and its susceptibility to immunolabeling in whole cells. Presumably, other outer surface components and molecules can mask, shield, protect, or hide epitopes from antibodies. ß-(1,3)-Glucan was more intensely recognized by monoclonal antibody in cells with lower trehalose and glycogen content. This suggests the need to cultivate yeast biomass under appropriate conditions to fulfil possible therapeutic functions. However, our in vitro findings should be confirmed in further studies using tissue or animal models.


Assuntos
Candida , beta-Glucanas , Animais , Glucanos , Glicerol/metabolismo , Trealose/metabolismo , Anticorpos Monoclonais/metabolismo , Leveduras/metabolismo , Polissacarídeos/metabolismo , Parede Celular/metabolismo , beta-Glucanas/metabolismo
18.
Nanomedicine ; 56: 102733, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199450

RESUMO

Anti-cancer monoclonal antibodies often fail to provide therapeutic benefit in receptor-positive patients due to rapid endocytosis of antibody-bound cell surface receptors. High dose co-administration of prochlorperazine (PCZ) inhibits endocytosis and sensitises tumours to mAbs by inhibiting dynamin II but can also introduce neurological side effects. We examined the potential to use PEGylated liposomal formulations of PCZ (LPCZ) to retain the anti-cancer effects of PCZ, but limit brain uptake. Uncharged liposomes showed complete drug encapsulation and pH-dependent drug release, but cationic liposomes showed limited drug encapsulation and lacked pH-dependent drug release. Uncharged LPCZ showed comparable inhibition of EGFR internalisation to free PCZ in KJD cells. After IV administration to rats, LPCZ reduced the plasma clearance and brain uptake of PCZ compared to IV PCZ. The results suggest that LPCZ may offer some benefit over PCZ as an adjunct therapy in cancer patients receiving mAb treatment.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Ratos , Animais , Proclorperazina/efeitos adversos , Dinamina II/metabolismo , Lipossomos/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/metabolismo , Encéfalo/metabolismo , Polietilenoglicóis/uso terapêutico
19.
Anal Chem ; 96(5): 1890-1897, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38262068

RESUMO

Despite substantial efforts to detect host cell proteins (HCPs) in antibody drugs, information regarding HCPs in gene therapy products remains limited and has not been widely integrated into the host cell engineering or purification processes. Most methods that have successfully detected HCPs in antibody drugs are not applicable to gene therapy products, except for the ProteoMiner enrichment method. Here, we demonstrate that ProteoMiner beads effectively enrich HCPs in adeno-associated virus (AAV) products and simultaneously remove the detergent Pluronic F-68 without a loss of low-abundance HCPs. Following optimization of this technique, there was up to a 34-fold increase in the enrichment of HCPs compared to direct digestion. Moreover, the detection limit was significantly lowered with the ability to detect HCPs at levels as low as 0.1 ng/mL after ProteoMiner treatment. This approach holds promise in AAV HCP analysis and may be adaptable to other gene therapy products. The findings from this study provide valuable insights into HCPs in AAV products and may facilitate process development and host cell line optimization. The high sensitivity of this approach also facilitates detection of critical low-abundance HCPs, thereby contributing to risk assessment of their impact on the safety and quality of the AAV-based gene therapy products.


Assuntos
Anticorpos Monoclonais , Dependovirus , Cricetinae , Animais , Anticorpos Monoclonais/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Cricetulus , Células CHO , Tecnologia
20.
Hear Res ; 442: 108950, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218017

RESUMO

Countless therapeutic antibodies are currently available for the treatment of a broad range of diseases. Some target molecules of therapeutic antibodies are involved in the pathogenesis of sensorineural hearing loss (SNHL), suggesting that SNHL may be a novel target for monoclonal antibody (mAb) therapy. When considering mAb therapy for SNHL, understanding of the pharmacokinetics of mAbs after local application into the middle ear is crucial. To reveal the fundamental characteristics of mAb pharmacokinetics following local application into the middle ear of guinea pigs, we performed pharmacokinetic analyses of mouse monoclonal antibodies to FLAG-tag (FLAG-mAbs), which have no specific binding sites in the middle and inner ear. FLAG-mAbs were rapidly transferred from the middle ear to the cochlear fluid, indicating high permeability of the round window membrane to mAbs. FLAG-mAbs were eliminated from the cochlear fluid 3 h after application, similar to small molecules. Whole-body autoradiography and quantitative assessments of cerebrospinal fluid and serum demonstrated that the biodistribution of FLAG-mAbs was limited to the middle and inner ear. Altogether, the pharmacokinetics of mAbs are similar to those of small molecules when locally applied into the middle ear, suggesting the necessity of drug delivery systems for appropriate mAb delivery to the cochlear fluid after local application into the middle ear.


Assuntos
Orelha Interna , Perda Auditiva Neurossensorial , Camundongos , Cobaias , Animais , Anticorpos Monoclonais/metabolismo , Distribuição Tecidual , Orelha Interna/metabolismo , Cóclea/metabolismo , Orelha Média , Janela da Cóclea/metabolismo , Perda Auditiva Neurossensorial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...